Hi! I’m a PhD student at Carnegie Mellon University , advised by Prof. Kun Zhang and Prof. Peter Spirtes .
I have also been fortunate to intern at Adobe Research with Zhe Lin , Zhifei Zhang , and Tobias Hinz , and at Google with Yang Zhao , Zhisheng Xiao , and Kelvin C. K. Chan .
News
Research Highlights
My long-term research goal is to develop generative AI systems that go beyond producing realistic multimodal data to capturing the underlying structure of the world. By grounding machine learning and computer vision in principled representations of structure and dependencies, I aim to make generative models not only powerful, but also controllable, interpretable, trustworthy, and capable of systematic generalization.
Research Diagram
Causal Generative AI
How can we formulate guiding principles—particularly causality—to direct the learning of generative models?
How can we implement these principles in scalable generative systems?
Bridging theory and practice to build controllable generative AI
Show Details
When and how true generative factors are identifiable from data.
Causal Representation Learning:
Counterfactual Reasoning:
Achieving minimal distortion while faithfully following conditions.
Multi-Domain Image Generation:
Unpaired Image Translation:
Uncovering modular concepts from multimodal data.
Modular Concept Alignment:
Atomic Visual and Textual Concept for Control:
Text-Guided Image Manipulation:
Opening the black box to interpret and refine generative models.
Interpretability of Generative Models:
Policy Optimization for Generative Models:
Publications
Publications
Filter Publications:
Selected Papers
Vision Language Alignment
Controllable Visual Generation
Theoretical Foundations
Understanding and Post-Training
All Papers
Shaoan Xie* , Lingjing Kong*, Xiangchen Song, Xinshuai Dong, Guangyi Chen, Eric P.Xing, Kun Zhang
(arXiv) , 2025.
Lingjing Kong*, Shaoan Xie* ,, Guangyi Chen, Yuewen Sun, Xiangchen Song, Eric P. Xing, Kun Zhang
NeurIPS Mechanistic Interpretability Workshop , 2025.
Yifan Shen*, Peiyuan Zhu*, Zijian Li, Shaoan Xie , Zeyu Tang, Namrata Deka, Zongfang Liu, Guangyi Chen, Kun Zhang
(arXiv) , 2025.
Shaoan Xie* , Lingjing Kong*, Yujia Zheng, Zeyu Tang, Eric P.Xing, Guangyi Chen, Kun Zhang
International Conference on Machine Learning (ICML) , 2025.
Yujia Zheng*, Shaoan Xie* , Kun Zhang
International Conference on Machine Learning (ICML) , 2025.
Shaoan Xie* , Lingjing Kong*, Yujia Zheng, Yu Yao, Zeyu Tang, Eric P.Xing, Guangyi Chen, Kun Zhang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) , 2025. Highlight
Ignavier Ng, Shaoan Xie , Xingshuai Dong, Peter Spirtes, Kun Zhang
International Conference on Artificial Intelligence and Statistics (AISTATS) , 2025.
Zijian Li, Shunxing Fan, Yujia Zheng, Ignavier Ng, Shaoan Xie , Guangyi Chen, Xinshuai Dong, Ruichu Cai, Kun Zhang
International Conference on Learning Representations (ICLR) , 2025.
Kun Zhang*, Shaoan Xie* , Ignavier Ng*, Yujia Zheng
International Conference on Machine Learning (ICML) , 2024.
Shaoan Xie , Yang Zhao, Zhisheng Xiao, Kelvin C.K. Chan, Yandong Li, Yanwu Xu, Kun Zhang, Tingbo Hou
(arXiv) , 2024.
Shaoan Xie* , Biwei Huang*, Bin Gu, Tongliang Liu, Kun Zhang
ICML Workshop on Counterfactuals in Minds and Machines , 2024.
Yanwu Xu, Shaoan Xie , Wenhao Wu, and Kun Zhang, Mingming Gong, Kayhan Batmanghelich
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) , 2022.
Yanwu Xu, Shaoan Xie , Maxwell Reynolds, and Matthew Ragoza, Mingming Gong, Kayhan Batmanghelich
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) , 2022.
Yanwu Xu, Mingming Gong, Shaoan Xie , Wei Wei, Matthias Grundmann, Kayhan Batmanghelich, Tingbo Hou
Advances in Neural Information Processing Systems (NeurIPS) , 2023.
Shaoan Xie , Zhifei Zhang, Zhe Lin, Tobias Hinz and Kun Zhang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) , 2023. Highlight
Shaoan Xie , Yanwu Xu, Mingming Gong and Kun Zhang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) , 2023.
Shaoan Xie , Lingjing Kong, Mingming Gong and Kun Zhang
International Conference on Learning Representations (ICLR) , 2023. Spotlight
Shaoan Xie , Qirong Ho and Kun Zhang
Advances in Neural Information Processing Systems (NeurIPS) , 2022.
Shaoan Xie , Mingming Gong, Yanwu Xu and Kun Zhang
IEEE/CVF International Conference on Computer Vision (ICCV) , 2021.
Shaoan Xie , Zibin Zheng, Liang Chen, and Chuan Chen
International Conference on Machine Learning (ICML) , 2018.
Lingjing Kong, Shaoan Xie , Weiran Yao, and Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akinwande, Kun Zhang
International Conference on Machine Learning (ICML) , 2022. Spotlight
Services
Area Chair
ICLR ’26
Session Chair
ICDM ’24
Conference Reviewer
ICML, NeurIPS, ICLR, CVPR, ICCV, UAI, AISTATS, IJCAI
Journal Reviewer
TPAMI, TIP, AI, CSUR, TNNLS, PR, TMM